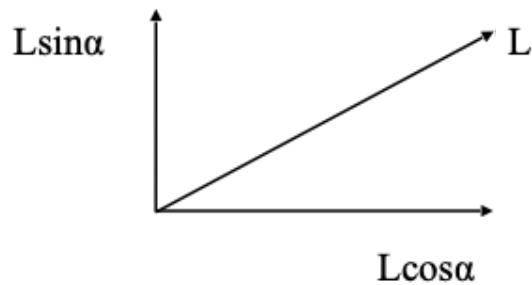


A Mathematical Exploration of Symmetry and the Foundations of Perceptual Cognition

mail@songyouchen.com

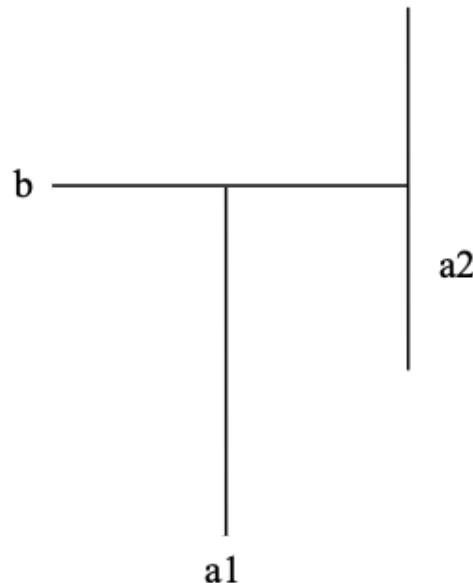

Abstract

Symmetry is proposed as the "First Axiom" of human cognition, a fundamental principle underlying our perception of reality and beauty. This paper introduces the foundational concepts of a new field, which we term Perceptual Mathematics, aimed at mathematically modeling the biological and psychological aspects of human perception. We analyze the classic T-segment visual illusion ($a_1=b$ fact, but $a_1>b$ perceived) to demonstrate that illusions arise not from physiological defects, but from the interference between the Real Ratio (RR) of geometric figures and an internally generated Psyche Ratio (PR) caused by memory persistence and cognitive processing. To quantify the inherent symmetric properties of geometric configurations, we propose a mathematical framework involving the Characteristic Point U_n , which satisfies an extremal condition on the sum of powers of distances. This framework leads to a definition of Generalized Balance Symmetry and a metric, Symmetry Saturation, for measuring the degree of symmetry, paving the way for a shape-centric, coordinate-independent geometry.

1. Introduction: Symmetry as the First Axiom of Human Perception

The concept of symmetry permeates not only the physical laws of the universe but also the deepest layers of human thought and aesthetics. We assert that Symmetry is the First Axiom of human cognition—the most fundamental, albeit often elusive, principle upon which our intellect and judgment of beauty are built.

Consider the classic example of a shooting target: the probability distribution of a shot landing at a distance L from the center O , $F(L)$, is solved by invoking the principle of symmetry. When two points A and B are equidistant from O ($OA=OB$), they are treated as entirely equivalent (symmetric) in the context of the physical laws governing the projectile. This universal acceptance of equivalence under equal conditions demonstrates the inherent "Symmetry Complex" (Symmetry Sentiment) in human reasoning. This "Axiom," while central to *our* intelligence, highlights a potential barrier to communication with hypothetically non-symmetrical-minded extraterrestrial life, underscoring its defining role in human wisdom.



2. The Genesis of Perceptual Mathematics

To understand the core of human intelligence, we must mathematically model the human perceptual mechanism—a field we term Perceptual Mathematics (or Feeling Maths Starting). The true beginning of *our* mathematics lies in these innate, self-evident cognitive "postulates" like the Symmetry Complex.

We examine the "T-case" visual illusion to challenge traditional physiological explanations and initiate the development of a perceptual model. In the T-shaped figure, where a vertical segment a_1 perfectly bisects a horizontal segment b , objective measurement confirms that $a_1 = b$ (Real Ratio, $RR=1$). However, the visual perception is almost universally $a_1 > b$.

Traditional explanations often attribute this to the difference between vertical and horizontal sight ranges. We argue against this, proposing that the illusion is an intrinsic property of the figure itself and the subsequent cognitive processing. The illusion persists because of the internal relationship: a_1 divides b into two equal halves (b_1, b_2), thus generating a Partial Ratio or Psyche Ratio (PR) of $1/2$ (e.g., $b_1/a_1 = 1/2$).

3. The Mechanism of Illusion: Ratio Interference

The core mechanism proposed is Memory Persistence and Interference:

1. Real Ratio (RR): The mind correctly perceives the actual geometric ratio, $RR = a_1/b = 1$, which is responsible for the stability and consistency of our visual world (e.g., how the vanishing point in perspective remains constant regardless of focal length adjustments).
2. Psyche Ratio (PR): The mind generates a secondary ratio, $PR = 1/2$, from the action of a_1 bisecting b . This partial ratio is stored and persists in the mind.
3. Interference: The perceived ratio is a complex mixture of the RR and the PR . The interference of the "partial" ratio ($1/2$) with the "whole" ratio (1) biases the perception. Since a_1 is the segment causing the bisection and interference, it is "amplified" in the perceived length, making it *look* longer than b .

The model posits that the specific way RR and PR are combined varies from person to person, accounting for individual differences in the magnitude of the illusion. Our task is to formulate a universal method for calculating the Psyche Ratio (which is closely related to symmetry) and to explore the mechanism of this cognitive interference.

4. A Generalized Mathematical Framework for Symmetry

To move beyond qualitative analysis, we introduce a mathematical framework to characterize the intrinsic balance and symmetry of any bounded m -dimensional configuration X . Let X be represented by a set of points $\{A_i\}$.

We define the Characteristic Point U_n for the configuration X under an action governed by $F \sim L^n$, where L is distance. U_n is the unique point that satisfies the extremal condition (minimum or maximum) for the sum of the $(n+1)$ -th powers of the distances from U_n to all points A_i :

$$\text{Extremum } \left(\sum_i |U_n - A_i|^{n+1} \right)$$

Alternatively, U_n is the point where the vector sum of generalized forces exerted by the points $\{A_i\}$ on U_n is zero.

- When $n=1$, U_1 is the geometric Centroid (or Center of Gravity) of the configuration (analogous to the arithmetic Mean).
- When $n=0$, U_0 is the Fermat Point (analogous to the Median).

The set of all "perfect points" U that satisfy an analogous "perfect requirement" for all possible n forms a set B . This set B , in conjunction with the original configuration X , reflects the Generalized Balance Symmetry of the configuration.

5. Quantifying Symmetry

The concept of Generalized Balance Symmetry allows us to propose a quantitative measure of a configuration's symmetric properties.

Let x be the dimension of the smallest frame X' that fully bounds and defines the configuration X .

Let b be the dimension of the set of perfect points B derived from X .

We define the Symmetry Saturation (SS) as:

$$SS = 1 - \frac{b}{x}$$

- For a perfectly symmetric object (e.g., a sphere or a line segment), the set of perfect points B often has the same dimension as X' (e.g., the center of a sphere, or the midpoint of a segment, in which case B might be defined differently, or b is 0). A value of SS close to 1 would indicate high symmetry. (A more refined definition may be needed for edge cases.)
- This metric attempts to quantify the inherent "balance" and structural uniformity of the shape, moving beyond rotational or reflectional symmetry alone.

6. Conclusion and Future Prospects

This paper represents the initial steps toward establishing a Perceptual Mathematics rooted in the innate human adherence to symmetry. By mathematically modeling the cognitive processes that generate visual illusions via the interference of Psyche Ratios and Real Ratios, we seek to better understand the fundamental structure of human intelligence.

The proposed framework, centered on the Characteristic Point U_n and the Symmetry Saturation index, aims for a novel mathematical branch that:

1. Focuses solely on shape (Topology).
2. Minimizes the role of conventional, artificial spatial coordinates.
3. Treats similar configurations as geometrically identical.
4. Respects the intrinsic properties of the configuration itself.

Ultimately, a deeper understanding of our unique "Symmetry Complex" and its mathematical formulation may not only reveal the true source of aesthetic beauty but also provide a crucial key—perhaps a universal "#-ID"—for recognizing and communicating with other forms of intelligence in the cosmos.